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factors presented by the T and image guides are higher than the

ones presented by the T equivalent guide [4]. Furthermore, the

transversal decay of the electromagnetic field on the n guide is

much lower than it is on the image or T guides. Consequently one

has to use to use higher minimal curvature radii for the n guide,

and thus one has to enlarge the circuit dimensions.

Reply z by J. F. Miao and T. Itoh 3

The authors of the paper [1] thank the authors of the above

comments for drawing attention to the existence of excellent

works reported elsewhere. Due to limited communication skills,

the authors of [1] could not detect the papers referenced in the

comments. It should be noted, however, that the primary objec-

tive of [1] is to develop a directional coupler with addit~onal

design parameters after a simple theory of analysis is experimen-

tally confirmed.

The generalized telegrapher’s equation by Schelkunoff has pre-

viously been used by Ogusu in analyzing a number of dielectric

waveguides [5].
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Comment on “Variational Methods For Nonstandard

Elgenvalue Problems in Waveguide and Resonator

Analysis”

G. J. GABRIEL

In his recent workl, Linden proposes variational methods for

so-called nonstandard eigenvalue problems with sweeping gener-

alities. To be sure, unorthodox formulations and solution of

broad classes of problems ought to be encouraged, provided that

they are consistent and that they are cogently demonstrated to
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offer significant improvement over existing knowledge. It is the

purpose of the following comments to prove the inherent fallacy

of the proposed principle and to call attention to aspects of this

work that seriously deviate from established principles and usage

of mathematics. These deviations offer a partial explanation for

failure of the proposed method. For convenience, whenever equa-

tions are reproduced here they are numbered as the original work

followed with the suffix L.

According to

formulated as

PROOF OF FALLACY

Linden, the nonstandard eigenvalue problem is

.L(X)f(r)=O, rGs (IL)

B(A) f(r)=O, rEC (2L)

where ~ is a vector field defined at points of a two-dimensional

plane S bounded by a closed curve C, a subset of S. The operator

L(A) is linear and depends on a parameter A, interpreted as the

eigenvalue, and B(X) is another linear operator which primarily

states the boundary constraint on f at points on C. To arrive at

the variational principle, the rather unorthodox notion of

boundary imer products is introduced resulting in the so-called

generalized Green Theorem stated in (3 L). It is then asserted that

the linear functional

F(A; f)=(f, L(A) f)+(Cf, B(A)f)b (5L)

is a variational principle in that when F( A; f) = O, then the

variation 8F vanishes whenever the variation 8A vanishes, pro-

vided that f is a solution of the system (lL) and (2L). Here the

subscript b denotes integration over the boundary.

To prove the fallacy of this assertion, let us for the moment

accept the notion of inner product on the boundary, the gen-

eralized Green Theorem (3 L), and the ill-defined meaning of

adjoint operator. Then, by pure formalities, there results

8F(A; f )=2[(8f, Lf)+(cr3f, Bf)b]

+8 A[(f, L’f)+(cf!l?7)bl (6L)

where L’ and B‘ are operators denoting derivatives of L and B

with respect to A. Here, Linden has overlooked the fact that f
may be a function of A, to say nothing for the moment of the

alarming presence of variations 8f on the boundary! Neverthe-

less, he maintains that 13F vanishes if 8A vanishes “unless by

chance the (second) bracketed term is zero. Hence, if we solve

for A the equation F(A; f ) = O the arising functional X = J( f ) is

stationary when f is a solution of (lL) and (2L) and the stationary

value of J(f) is the value of the corresponding parameter, the

nonstandard eigenvalue.”

Aside from overall improprieties inherent in the formulation as

discussed below, the sufficiently decisive question here is whether

or not the second bracketed term in (6L) vanishes. Unfor-

tunately, this term which we denote by A ( A ) does vanish always,

as demonstrated next. It is presumed that L’ and B’ are proper

derivatives of operators with respect to X. Since ~ is a solution of

(lL) and (2L), it also is a function of X. It follows from (lL) and

(2L) that

L’(A) f=- L(A)# (1)

B’(~) f=– B(A)# (2)

where on the righthand side L and B operate on 8f/ 8A. If f is
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not a function of A, as is the case in the derivation of (6 L), then

both L’f and By vanish identically. More appropriately, if we

take into account the fact that ~ is a function of A, then the

consistent form of the second braketted term would be

A(A)= (f, L~+L#)+(Cf, B’f+B#),

‘(%Lf)+(cwb‘3)
Again, by (1) and (2), the first two terms vanish, and by (lL) and

(2L) the last two terms vanish. Thus, A(A) is always zero. Q.E.D.

Because A(A) vanishes, it is clear from (6L) that the wiriation

8F vanishes for any nonzero il~. Consequently, the quantity ~(~)

is not the stationary value of the so-called eigenvalues as Linden

maintains and erroneously applies to subsequent examples.

Stated rigorously, without a licentious use of boundary inner

products, the proposed principle in (5L) is tantamount to the

following. Given the linear operator L(A): D -+ D, mapping the

domain D to the range D, and suppose for simplicity that

the system [L; D] is self-adjoint in the accepted sense discussed

below. We seek those values of X = J( u) which, for any vector

u ● D, result in the vanishing inner product

(U, L(A) U)=O. (4)

Obviously, a sufficient but not necessary condition for this inner

product to vanish is that u be a solution of Lu = O. However, the

roots A = J( UO) of (4) calculated for any UO such that LUO # O

also reduce the inner product to zero so that the most one can

assert is that, for these particular values of A, UO and LUO are

orthogonal. There is nothing here that necessarily suggests a

stationary character or that J( UO) is an eigenvalue.

The ambiquity is perhaps best illustrated by examining one of

the examples, which is typical of the others, offered by Linden in

support of his exposition. Stripped of the above formalism, the

example in Section II-B is essentially stated as

v xv xf(r)– A2p6f(r)=o, ~ =s (16L)

nx v x f(r) =AKf(r), r e C (17L)

where n is the unit inward normal on C and & = j – nn. f.

Directly, we form the inner product and set it equal to zero

(f, Lf)=~j*. (vxvxf-A2p@is=o. (5)

However, it should be noted that althou~~has all three Euclidean

components, they are not functions of the coordinate z. So, in

effect, the operator v is the usual transverse operator VT given

in the coordinates of S. By routine application of the vector

identity

v~”(gxf) =f”v~xg–g”v~x. t (6)

together with the two-dimensional divergence theorem and the

boundary condition (17L), one arrives at the expression for F(A;

f) given here as

F(A, f)=– A*p6Jlf]*ds –AK/[fl* dc+Jlvxfl*ds=o.

(20L)

‘his is not the simplistic quadratic form in A that it is intimated

to be. On the one hand, if j is to be a solution of (16L), then it

must necessady be a function of A. The integrals of ~ comprising

the coefficients of M are then also functions of A. Consequently,

the expression F( A; f ) = O is in reality a transcendental equation

which would usually have an infinite sequence of roots. On the

other hand, if ~ is not a solution of (16L) but it is any integrable

and once differentiable function selected at will, the resulting

roots A assure at most that f is orthogonal to Lj, as a solution to

(5).

These considerations can be demonstrated more concretely by

taking

~(r) = u=sinax

over the rectangular region x = [0, a], y = [0, b]. By forcing ~ to

be a solution of (16L) we must have a = A@. In that case, after

calculation of the indicated integrals in (20L), it would be easy to

see that the result is a transcendental equation whose roots are,

forn=O, *1, *2,.. .,

A.= ~[2nm -tarctan(l/Kc)]

where c = I/@. Alternately, an arbitrary a would lead to the

quadratic roots A which assure the vanishing inner product (5)

but not a solution of (16L). What, then, is the distinction between

the two sets of roots? The proposed theory does not provide

unambiguous answers, if any.

DEVIATIONS FROM CONVENTION

Failure of the proposed variational principle is not surprising

in light of the numerous departures from established mathemati-

cal principles and usage without convincing arguments. We raise

two objections to elicit the sort of inconsistencies that contribute

to the failure, in one way or another.

The first objection concerns treatment of the boundary terms.

In boundary value problems, generally the boundary constraints

serve to specify the domain of an operator. Thus in the original

statement of the problem, (IL) and (2L), the domain of the

functions f(r) is the set of points comprising the two-dimensional

plane S bounded by the curve C. In contradistinction, the do-

main D of the operator L(A) is the set of functions f (r) satisfy-

ing the boundary constraint (2L), viz.

D={ f(~): B(A) f(rO)=O, rO~C}.

Proper treatment of boundary constraints becomes more criti-

cal if an adjoint operator and its domain are to have the customary

meanings [2], [3]. Let L: U- V be a linear operator, and L+:

U++ V+ be another linear operator, as yet unspecified. For any

pair of vectors u e U and u+ G U+, one forms the inner product

(u+, Lu). By a process of integration by parts there results

(U+, LU)-(L+U+, U)= C(U+, ZJ)

where C( u +, u) is called the conjunct and it is the integrated

terms evaluated at the bounday. The boundary constraint on u‘,

which serves to define the domain U+, is so selected that the

conjunct C( u+, u) vanishes for every u and u+. In that case, [L+;

U+] is the adjoint of the system [L; U]. Unless the conjunct

vanishes, the adjoint system is not fully defined or, at best, it is

an improper adjoint. When L = L+ and U = U+, the system is

self-adjoint.

What Linden calls boundary inner product, without justifica-

tion or rigor, is what is commonly called the conjunct. Indeed, if

this inner product is consistent, its significance should also hold

in the simplest case of the one-dimensional scalar Green theorem.

For u(x) and v(x) defined over the interval a < x < b, we have

J’(uv-uu)dx=wb( ti,”)-w(u,.)=c( u,.)
a

where Wfi and Wa are the Wronskians evaluated at b and a, the

end points. One would be hard pressed, by any measure of



788 IEEETRANSACTIONSON MICROWAVETHEORYAND TE~HNIQUES,VOL. MTT-31, NO. 9, SEPTEMBER1983

consistency, to interpret these boundary terms as inner products,

let alone interpretting ualues of derivatives at a point as an

operator within the inner product. The objectionable nature of

this interpretation of operators on the boundary is further il-

lustrated if one considers the usual three-dimensiond Green

Theorem over a sphere

&f’w’+-+v’@)d”= j(+v+-+vo)”~~~=c(+j+).
x

Here, also, one sees that the derivatives at the boundary are with

respect to the radial coordinate evaluated at a fixed radius, and

not operators in the angle coordinates of integration. Linden’s

proposition is neither consistent nor sufficiently compelling to

warrant departure from the customary viewpoint.

The second objection centers on the very notion of a nonstan-

dard eigenvalue problem which is found tenuous if not meaning-

less in a variational context. In essence, the calculus of variations

seeks to identify those functions (vectors) that extremize a certain

functional which is usually in the form of a definite integral [4].

The admissible functions form a class restricted by the common

boundary constraint shared by all the functions at the boundary

of the region of integration. Consequently, as a matter of course,

the variations, 8f, must vanish at the boundary in any proper

variational development. The very inclusion of a boundary term

in Linden’s expression is sufficient to question its veracity. More-

over, a variational expression, as such, is not an approximation

method, though it is sometimes convenient to employ it that way.

Rather, it is a principle which states in a nutshell an essential

property of a system from which the governing equations of the

system are obtained. Thus for example, minimization of the arc

length between two points in a given metric leads to equations for

geodesics, minimization of the action integral over a fixed time

interval leads to Newton–Lagrange equations of motion, minimiz-

ation of electrostatic energy leads to the Laplace Equation, and

so on.

The eigenvalue problem as it is commonly understood is not

different. However, not every parameter of a system qualifies as

an eigenvalue, and not every solution of a problem is an eigenvec-

tor, as asserted in [1]. Variational aspect of an eigenvalue prob-

lem may be summarized thus. Given a linear self-adjoint

positive-definite operator L: U - V. In order for an inner prod-

uct (u, o) to be meaningful for every u = U and o = V, it is

necessary that both u and V be subsets of a common set. The

object is to identify those vectors u whose projection on o = Lu is

a maximum subject to normalization with respect to 1]u Il. In other

words, the vector u must be so chosen as to maximize the

non-linear functional

~[ul= (u, v) = (u, Lu)

(U, u) (U, u) “
(8)

Analytical proofs of the extremum property of this functional are

quite well known [2]. Here, a simple geometric analogy is suffi-

cient for us to conclude that the projection is maximized when u

and o are colinear. That is, if there exists a number a, called an
eigenva[ue,and a vector Ue, called an elgenvector, such that

Lua = alla (9)

then F[ u.] is a maximum and its value is F[ u.]= ~. This is fie

commonly understood meaning of an eigenvalue problem.

The choice of IIu[[ for normalization is not critical. For, if there

is another operator M; U ~ W, and w = Mu, one could maximize

the projection of u on Lu subject to normalization with respect to

the projection of u on w, viz.

(u, Lu)

‘[ U]=(U, MU)’
(lo)

This functional is maximum when

Lu~ = ~MuB . (11)

Eigenvalue problems encountered in waveguide theory belong in

this class as first shown in earlier works [5], [6]. Extension of the

projection viewpoint to operators that are not self-adjoint is

straightforward.

The critical point to emphasize here is that the eigenvalue is a

particular (maximum) value of the functional F [ u] and not the

value of some parameter that appears in the functional through

the dependence of the operator on that parameter. In the pro-

posed nonstandard eigenvalue problem [1], the values of a func-

tional generated from projection are being confused with values

of the parameter A which, in a generic form L(A), properly

belongs to the inherent structure of the operator. Allowing the

parameter A to vary essentially changes the operator and, there-

fore, the problem because for Al # X2, the operators L(X1) and

L( Az) are not the same. Accordingly, when properly formulated

as in (9), the eigenvalues of L(A) would be functions a(A).

Moreover, the functional in (8) is extrernized relative to choices

of vectors from the space on which it is defined, but not relative to

variations in A. Simply stated, A as employed in [1], in both the

abstract formalism and examples, cannot be an eigenvalue in the

accepted sense. What are really being calculated in these specific

examples are those values A = ~. for which L(Afi ) has the zero

eigenvalue, aO( A. ) = O, corresponding to a vanishing wavenum-

ber in waveguides. As further evidence, despite the fact that

v x v x is a self-adjoint operator on the indicated domain in

(16L) and (17L) discussed above, with real K and A, solutions fm
and fn corresponding to km and h., if such exist, are not orthogo-

nal as one would expect of proper eigenvectors. This can be

readily demonstrated.

CONCLUSION

The foregoing may seem to be a narrow viewpoint of what an

eigenvalue problem is. However, this is necessary because if the

conditions of a particular theory or method are not met in a given

situation, then the assertions —e.g. orthogonality—denved from

that theory are not applicable with any measure of confidence or

legitimacy. AU inconsistent formalism that fortuitously agrees

with some measurement or some calculations proves nothing. In

contrast, a consistent theory that disagrees with measurements

does have a value, in that it logically points to inadequacy of the

hypothesis made about the physicaf system. In this sense, the

numerical calculations offered in [1] in support of the theory are

of dubious merit as supportive evidence, since the underlying

theory to begin with is proven inconsistent.

Reply~ by I. V. Linde113

The above comments on my paper given by Dr. Gabriel were

received with interest, in fact, some reaction from the mathemati-

cians was expected, because the concepts given in [1] cannot be

2 Manuscript received May 12, 1983
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considered final and there seems much” honing to be done by

mathematicians before the theory can satisfy everybody. The

present comments, however, did not quite meet my expectations.

In fact, I was puzzled to find that in spite of the evidence given’ in

[1], the reaction was so negative. The critique is not only towards

myself, but also towards the system of refereeing in this TRANS-

ACTIONS because [1] and two further papers applying the theory

of [1] have penetrated the refereeing sieve.

A close consideration of the comments by Dr. Gabriel, how-

ever, reveals an ignorance of the main logic presented in [1]. The

central argument considers the validity of my expression denoted

by (6L) in Dr. Gabriel’s comments. Instead of proving fallacies in

these comments (which would be of entertaining value to readers

with interest in debates), I would prefer to restate my arguments

in a clearer manner (which is more useful for those really inter-

ested in the method presented in [1]).

To be as concise as possible, let us drop the boundary condi-

tion operator and suppose that the functions considered satisfy

these conditions. So, the (nonstandard) eigenvalue equation is

simply of the form L ( A )j = O. Since we do not consider radiation

problems, the eigenvalues form a discrete set A.. The eigenfunc-

tion ~ is, of course, a function of the eigenvalue, but since f = O

for those values of A which do not belong to the spectrum of

eigenvalues, the functional relationship is not a continuous one,

in fact, there is no derivative d~/ 8A at the eigenvalues, at least in

the traditional sense.

The central point is whether we can obtain stationary function-

al from the equation (~, L(A)f) = O or not. To make no room

for misunderstanding, let us consider an equation of the form

(g, L(~)g) = O, where /? is a parameter and g a function satisfy-

ing the correct boundary conditions. It can be well assumed that

this equation possesses roots /3, which depend on the function g

continuously. It also possesses the (nonstandard) eigenvalues X n

as roots when g equals $, the corresponding eigenfunctions. From

the continuity we deduce that when g departs from ~ just a little,

say, g = ~ + tj, the corresponding root also departs from A just a

little: ~ = X + 8A. The equation for 8A is obtained from the

first-order equation 2( rS~,L(A)~) + 8A(~, L’(A)j) = O. Because

the first term vanishes for solutions of the eigenvalue equation, so

must the second. Hence, either we have (~, L’(A)f) = O or 8A = O.

As we see from the above, the dependence of f on 1 does not have

any role, whence there is no reason to assume that the bracketed

term vanishes, in general, which leads to the condition 8A= O, or

the roots of the equation (g, L(p) g) = O approximate ~ = A up

to the second order if g approximates f to the first order.

The present theory is best demonstrated by examples, which

are not mere calculations, as Dr. Gabriel calls them, but methods

of obtaining stationa~ functional, whose stationarity can be

checked at once. In addition to the examples mentioned in [1],

there are more complicated problems in [7] and [8] which rely on

the present theory. The example given in Dr. Gabriel’s comments

appears strange to me. The function uz sin ( ax ) does not satisfy

the correct boundary conditions. Choosing a proper function will

result in the correct eigenvalue.

The second objection by Dr. Gabriel concerns the usage of

mathematics, which he finds different in [1] from that in books

on mathematics. To this I must admit, although boundary in-

tegrals have been present in stationary functional even before

[9]. We could take the notion of boundary inner product as a

convenient way of writing down lengthy expressions. It is good

that there are scientists worned about the virginity of the Queen

of Sciences, but as we know from history, many concepts like

negative numbers or delta functions, for example, were first

received with dismay by mathematical purists. In fact, there exist

theories on evolution of science which urge scientists to fight

existing scientific structures for progress, [10], [11]. I really hope

that there will be mathematicians to explain with sufficient rigor

why the theory presented in [1] works.
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