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factors presented by the T and image guides are higher than the
ones presented by the 7 equivalent guide [4]. Furthermore, the
transversal decay of the electromagnetic field on the # guide is
much lower than it is on the image or T guides. Consequently one
has to use to use higher minimal curvature radii for the = guide,
and thus one has to enlarge the circuit dimensions.

Reply” by J. F. Miao and T. Itoh’®

The authors of the paper [1] thank the authors of the above
comments for drawing attention to the existence of excellent
works reported elsewhere. Due to limited communication skills,
the authors of [1] could not detect the papers referenced in the
comments. It should be noted, however, that the primary objec-
tive of [1] is to develop a directional coupler with additional
design parameters after a simple theory of analysis is experimen-
tally confirmed.

The generalized telegrapher’s equation by Schelkunoff has pre-
viously been used by Ogusu in analyzing a number of dielectric
waveguides [5].
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Comment on “Variational Methods For Nonstandard
Eigenvalue Problems in Waveguide and Resonator
Analysis”

G. J. GABRIEL

In his recent work?, Lindell proposes variational methods for
so-called nonstandard eigenvalue problems with sweeping gener-
alities. To be sure, unorthodox formulations and solution of
broad classes of problems ought to be encouraged, provided that
they are consistent and that they are cogently demonstrated to
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offer significant improvement over existing knowledge. It is the
purpose of the following comments to prove the inherent fallacy
of the proposed principle and to call attention to aspects of this
work that seriously deviate from established principles and usage
of mathematics. These deviations offer a partial explanation for
failure of the proposed method. For convenience, whenever equa-
tions are reproduced here they are numbered as the original work
followed with the suffix L.

PROOF OF FALLACY

According to Lindell, the nonstandard eigenvalue problem is
formulated as

L(A)f(r)=0, (1L)
B(M)f(r)=0, (2L

where f is a vector field defined at points of a two-dimensional
plane S bounded by a closed curve C, a subset of S. The operator
L(M) is linear and depends on a parameter A, interpreted as the
eigenvalue, and B(A) is another linear operator which primarily
states the boundary constraint on f at points on C. To arrive at
the variational principle, the rather unorthodox notion of
boundary inner products is introduced resulting in the so-called
generalized Green Theorem stated in (3L). It is then asserted that
the linear functional

FOS )= (L L)) +(Cf,B(A)S), (5L)
is a variational principle in that when F(A; f)=0, then the
variation 8 F vanishes whenever the variation §\ vanishes, pro-
vided that f is a solution of the system (1L) and (2L). Here the
subscript b denotes integration over the boundary.

To prove the fallacy of this assertion, let us for the moment
accept the notion of inner product on the boundary, the gen-
eralized Green Theorem (3L), and the ill-defined meaning of
adjoint operator. Then, by pure formalities, there results

OF(A; £)=2[(8f, Lf )+ (C8f, Bf )]
+8>‘[(f!L,f)+(Cf’Blf)b]

where L’ and B’ are operators denoting derivatives of L and B
with respect to A. Here, Lindell has overlooked the fact that f
may be a function of A, to say nothing for the moment of the
alarming presence of variations 8f on the boundary! Neverthe-
less, he maintains that §F vanishes if §A vanishes “unless by
chance the (second) bracketted term is zero. Hence, if we solve
for A the equation F(A; f)= 0 the arising functional A = J(f) is
stationary when f is a solution of (1L) and (2L) and the stationary
value of J(f) is the value of the corresponding parameter, the
nonstandard eigenvalue.”

Aside from overall improprieties inherent in the formulation as
discussed below, the sufficiently decisive question here is whether
or not the second bracketted term in (6L) vanishes. Unfor-
tunately, this term which we denote by A(X) does vanish always,
as demonstrated next. It is presumed that I’ and B’ are proper
derivatives of operators with respect to A. Since f is a solution of
(1L) and (2L), it also is a function of A. It follows from (1L) and
(2L) that

res

reC

(6L)

®

@
where on the righthand side L and' B operate on df/dA. If f is

L(\)f=-L(\)oL

B(Nf==BO) 5
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not a function of A, as is the case in the derivation of (6L), then
both L’f and B’f vanish identically. More appropriately, if we
take into account the fact that f is a function of A, then the
consistent form of the second braketted term would be

- vy 7 9f v pof
A(A)= (f’LerLa)\)J“(Cf’BfJ”BaA)b

af af
+(55 1 )+(cotB), ©®
Again, by (1) and (2), the first two terms vanish, and by (1L) and
(2L) the last two terms vanish. Thus, A(A) is always zero. Q.E.D.
Because A(A) vanishes, it is clear from (6L) that the variation
8 F vanishes for any nonzero §A. Consequently, the quantity J( f)
is not the stationary value of the so-called eigenvalues as Lindell
maintains and erroneously applies to subsequent examples. .
Stated rigorously, without a licentious use of boundary inner
products, the proposed principle in (5L) is tantamount to the
following. Given the linear operator L(A): D -» D, mapping the
domain D to the range D, and suppose for simplicity that
the system [ L; D] is self-adjoint in the accepted sense discussed
below. We seek those values of A = J(u) which, for any vector
u € D, result in the vanishing inner product

(u,L(A)u)=0. 4
Obviously, a sufficient but not necessary condition for this inner
product to vanish is that # be a solution of Lu = 0. However, the
roots A = J(u,) of (4) calculated for any u, such that Lu,+ 0
also reduce the inner product to zero so that the most one can
assert is that, for these particular values of A, u, and Lu, are
orthogonal. There is nothing here that necessarily suggests a
stationary character or that J(u,) is an eigenvalue.

The ambiquity is perhaps best illustrated by examining one of
the examples, which is typical of the others, offered by Lindell in
support of his exposition. Stripped of the above formalism, the
example in Section II-B is essentially stated as

VXV X f(r)-Npef(r)=0,
nX v X f(r) =AK£(r),

where n is the unit inward normal on C and f,= f—mn-f.
Directly, we form the inner product and set it equal to zero

res (16L)
reC (17L)

(1) = [1*(V XV X f=Nuef)ds=0.  (5)

However, it should be noted that although f has all three Euclidean
components, they are not functions of the coordinate z. So, in
effect, the operator v is the usual transverse operator v given
in the coordinates of S.. By routine application of the vector
identity

Vr (X f)=fVrXg—gVrXf (6)
together with the two-dimensional divergence theorem and the

boundary condition (17L), one arrives at the expression for F(A;
f) given here as

F(A,f)=—)\zpef|f|2dS—-AKf|f;|2dC+f|V X f|2ds =0.
(20L)

This is not the simplistic quadratic form in A that it is intimated
to be. On the one hand, if f is to be a solution of (16L), then it
must necessarily be a function of A. The integrals of f comprising
the coefficients of A" are then also functions of A. Consequently,
the expression F(A; f) = 0 is in reality a transcendental equation
which would usually have an infinite sequence of roots. On the

787

other hand, if f is not a solution of (16L) but it is any integrable
and once differentiable function selected at will, the resulting
roots A assure at most that f is orthogonal to Lf, as a solution to
(5).

These considerations can be demonstrated more concretely by
taking !

f(r)=u,sinax

over the rectangular region x €0, a], y €0, b). By forcing f to
be a solution of (16L) we must have a = A‘/IE . In that case, after
calculation of the indicated integrals in (20L), it would be easy to
see that the result is a transcendental equation whose roots are,
forn=0, +1, +2,---,

,= 2[2nw +arctan(1/Kc)]

where c=1/ ﬁ? . Alternately, an arbitrary a would lead to the
quadratic roots A which assure the vanishing inner product (5)
but not a solution of (16L). What, then, is the distinction between
the two sets of roots? The proposed theory does not provide
unambiguous answers, if any.

DEVIATIONS FROM CONVENTION

Failure of the proposed variational principle is not surprising
in light of the numerous departures from established mathemati-
cal principles and usage without convincing arguments. We raise
two objections to elicit the sort of inconsistencies that contribute
to the failure, in one way or another.

The first objection concerns treatment of the boundary terms.
In boundary value problems, generally the boundary constraints
serve to specify the domain of an operator. Thus in the original
statement of the problem, (1L) and (2L), the domain of the
functions f(r) is the set of points comprising the two-dimensional
plane § bounded by the curve C. In contradistinction, the do-
main D of the operator L(A) is the set of functions f(r) satisfy-
ing the boundary constraint (2L), viz.

D={f(r):B(A)f(r,)=0,r,€C}.

Proper treatment of boundary constraints becomes more criti-
cal if an adjoint operator and its domain are to have the customary
meanings (2], [3]. Let L: U—V be a linear operator, and L™;
U* - V" be another linear operator, as yet unspecified. For any
pair of vectors u € U and #* € U*, one forms the inner product
(u*, Lu). By a process of integration by parts there results

(u*,La)y—(L*u*,u)=C(u",u)

where C(u*,u) is called the conjunct and it is the integrated
terms evaluated at the boundary. The boundary constraint on #™,
which serves to define the domain U™, is so selected that the
conjunct C(u™,u) vanishes for every u and u™. In that case, [L*;
U*] is the adjoint of the system [L; U]. Unless the conjunct
vanishes, the adjoint system is not fully defined or, at best, it is
an improper adjoint. When L= L™* and U=U", the system is
self-adjoint.

What Lindell calls boundary inner product, without justifica-
tion or rigor, is what is commonly called the conjunct. Indeed, if
this inner product is consistent, its significance should also hold
in the simplest case of the one-dimensional scalar Green theorem.
For u(x) and v(x) defined over the interval a < x < b, we have

fab(uv”— wv)ydx=W,(u,v)—W,(u,v)=C(u,v)

where W, and W, are the Wronskians evaluated at b and a, the
end points. One would be hard pressed, by any measure of
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consistency, to interpret these boundary terms as innet products,
let alone interpretting values of derivatives at a point as an
operator within the inner product. The objectionable nature of
this interpretation of operators on the boundary is further il-
lustrated if one considers the usual three-dimensional Green
Theorem over a sphere

[(69%—49%) dv= [ (694 ~¥V$)mdS=C(s,4).
V =

Here, also, one sees that the derivatives at the boundary are with
respect to the radial coordinate evaluated at a fixed radius, and
not operators in the angle coordinates of integration. Lindell’s
proposition is neither consistent nor sufficiently compelling to
warrant departure from the customary viewpoint.

The second objection centers on the very notion of a nonstan-
dard eigenvalue problem which is found tenuous if not meaning-
less in a variational context. In essence, the calculus of variations
sceks to identify those functions (vectors) that extremize a certain
functional which is usually in the form of a definite integral [4].
The admissible functions form a class restricted by the common
boundary constraint shared by all the functions at the boundary
of the region of integration. Consequently, as a matter of course,
the variations, 8f, must vanish at the boundary in any proper
variational development. The very inclusion of a boundary term
in Lindell’s expression is sufficient to question its veracity. More-
over, a variational expression, as such, is not an approximation
method, though it is sometimes convenient to employ it that way.
Rather, it is a principle which states in a nutshell an essential
property of a system from which the governing equations of the
system are obtained. Thus for example, minimization of the arc
length between two points in a given metric leads to equations for
geodesics, minimization of the action integral over a fixed time
interval leads to Newton—Lagrange equations of motion, minimi-
zation of electrostatic energy leads to the Laplace Equation, and
SO on.

The cigenvalue problem as it is commonly understood is not
different. However, not every parameter of a system qualifies as
an eigenvalue, and not every solution of a problem is an eigenvec-
tor, as asserted in [1]. Variational aspect of an eigenvalue prob-
lem may be summarized thus. Given a linear self-adjoint
positive-definite operator L: U — V. In order for an inner prod-
uct (#,v) to be meaningful for every u€U and o€V, it is
necessary that both U and V be subsets of a common set. The
object is to identify those vectors # whose projection on v = Lu is
a maximum subject to normalization with respect to ||#||. In other
words, the vector # must be so chosen as to maximize the
non-linear functional

u, u)
Analytical proofs of the extremum property of this functional are
quite well known [2]. Here, a simple geometric analogy is suffi-
cient for us to conclude that the projection is maximized when u
and v are colinear. That is, if there exists a number a, called an
eigenvalue, and a vector u,, called an eigenvector, such that

Lu,=au, 9

then F[u,] is a maximum and its value is Flu,]=a. This is the
commonly understood meaning of an eigenvalue problem.

The choice of ||u]| for normalization is not critical. For, if there
is another operator M; U — W, and w = Mu, one could maximize
the projection of u on Lu subject to normalization with respect to

o
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the projection of u on w, viz.

(u, Lu)
F =
[u] (u, Mu) (10)
This functional is maximum when
Lug =B Muy. (11)

Eigenvalue problems encountered in waveguide theory belong in
this class as first shown in earlier works [5], [6]. Extension of the
projection viewpoint to operators that are not self-adjoint is
straightforward.

The critical point to emphasize here is that the eigenvalue is a
particular (maximum) value of the functional F[u] and not the
value of some parameter that appears in the functional through
the dependence of the operator on that parameter. In the pro-
posed nonstandard eigenvalue problem [1], the values of a func-
tional generated from projection are being confused with values
of the parameter A which, in a generic form L(A), properly
belongs to the inherent structure of the operator. Allowing the
parameter A to vary essentially changes the operator and, there-
fore, the problem because for A, # A,, the operators L(A;) and
L(X,) are not the same. Accordingly, when properly formulated
as in (9), the eigenvalues of L(A) would be functions a(A).
Moreover, the functional in (8) is extremized relative to choices
of vectors from the space on which it is defined, but not relative to
variations in A. Simply stated, A as employed in [1], in both the
abstract formalism and examples, cannot be an eigenvalue in the
accepted sense. What are really being calculated in these specific
examples are those values A = A, for which L(A,) has the zero
eigenvalue, ay(A,) = 0, corresponding to a vanishing wavenum-
ber in waveguides. As further evidence, despite the fact that
v X ¥V X is a self-adjoint operator on the indicated domain in
(16L) and (17L) discussed above, with real K and A, solutions f,,
and f, corresponding to A, and A, if such exist, are not orthogo-
nal as one would expect of proper eigenvectors. This can be
readily demonstrated.

CONCLUSION

The foregoing may seem to be a narrow viewpoint of what an
eigenvalue problem is. However, this is necessary because if the
conditions of a particular theory or method are not met in a given
situation, then the assertions—e.g. orthogonality—derived from
that theory are not applicable with any measure of confidence or
legitimacy. An inconsistent formalism that fortuitously agrees
with some measurement or some calculations proves nothing. In
contrast, a consistent theory that disagrees with measurements
does have a value, in that it logically points to inadequacy of the
hypothesis made about the physical system. In this sense, the
numerical calculations offered in [1] in support of the theory are
of dubious merit as supportive evidence, since the underlying
theory to begin with is proven inconsistent.

Reply? by I. V. Lindell’

The above comments on my paper given by Dr. Gabriel were
received with interest, in fact, some reaction from the mathemati-
cians was expected, because the concepts given in [1] cannot be
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considered final and there seems much honing to be done by
mathematicians before the theory can satisfy everybody. The
present comments, however, did not quite meet my expectations.
In fact, I was puzzled to find that in spite of the evidence given'in
[1], the reaction was so negative. The critique is not only towards
myself, but also towards the system of refereeing in this TRANS-
ACTIONS because [1] and two further papers applying the theory
of [1] have penetrated the refereeing sieve.

A close consideration of the comments by Dr. Gabriel, how-
ever, reveals an ignorance of the main logic presented in [1]. The
central argument considers the validity of my expression denoted
by (6L) in Dr. Gabriel’s comments. Instead of proving fallacies in
these comments (which would be of entertaining value to readers
with interest in debates), I would prefer to restate my arguments
in a clearer manner (which is more useful for those really inter-
ested in the method presented in [1]).

To be as concise as possible, let us drop the boundary condi-
tion operator and suppose that the functions considered satisfy
these conditions. So, the (nonstandard) eigenvalue equation is
simply of the form L(A)f = 0. Since we do not consider radiation
problems, the eigenvalues form a discrete set A,. The eigenfunc-
tion f is, of course, a function of the eigenvalue, but since f =0
for those values of A which do not belong to the spectrum of
eigenvalues, the functional relationship is not a continuous one,
in fact, there is no derivative df/d\ at the eigenvalues, at least in
the traditional sense.

The central point is whether we can obtain stationary function-
als from the equation (f, L(A)f) =0 or not. To make no room
for misunderstanding, let us consider an equation of the form
(g, L(B)g) =0, where B is a parameter and g a function satisfy-
ing the correct boundary conditions. It can be well assumed that
this equation possesses roots 8, which depend on the function g
continuously. It also possesses the (nonstandard) eigenvalues An
as roots when g equals £, the corresponding eigenfunctions. From
the continuity we deduce that when g departs from f just a little,
say, g = [ + 8f, the corresponding root also departs from A just a
little: B=A + 8A. The equation for 8A is obtained from the
first-order equation 2(8f, L(A)f)+8A(f, L'(A)f)=0. Because
the first term vanishes for solutions of the eigenvalue equation, so
must the second. Hence, either we have (f, L'(A)f)=0o0r §A = 0.
As we see from the above, the dependence of f on A does not have
any role, whence there is no reason to assume that the bracketed
term vanishes, in general, which leads to the condition 6A = 0, or
the roots of the equation (g, L(B)g) = 0 approximate 8 = A up
to the second order if g approximates f to the first order.
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The present theory is best demonstrated by examples, which
are not mere calculations, as Dr. Gabriel calls them, but methods
of obtaining stationary functionals, whose stationarity can be
checked at once. In addition to the examples mentioned in [1],
there are more complicated problems in [7] and [8] which rely on
the present theory. The example given in Dr. Gabriel’s comments
appears strange to me. The function uzsin(ax) does not satisfy
the correct boundary conditions. Choosing a proper function will
result in the correct eigenvalue.

The second objection by Dr. Gabriel concerns the usage of
mathematics, which he finds different in [1] from that in books
on mathematics. To this I must admit, although boundary in-
tegrals have been present in stationary functionals even before
[9]. We could take the notion of boundary inner product as a
convenient way of writing down lengthy expressions. It is good
that there are scientists worried about the virginity of the Queen
of Sciences, but as we know from history, many concepts like
negative numbers or delta functions, for example, were first
received with dismay by mathematical purists. In fact, there exist
theories on evolution of science which urge scientists to fight
existing scientific structures for progress, [10], [11]. I really hope
that there will be mathematicians to explain with sufficient rigor
why the theory presented in [1] works.
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